L&-{ 1.3 Temporary objects and storage

Overview of temporary objects

Stata Self-Learning Course

Sometimes you need intermediate variables, matrices or
estimations for calculations or other purposes

In programs, two issues might emerge:

— You have to make sure that the name you give to the object does
not already exist

— Once you are done with the process, you don't need the object
anymore, it is in your way

Sometimes, preserve and restore can be helpful, but if the

program also has permanent outputs, this might not be

what you need

Locals have traits which would solve these issues, but
they can only store a certain kind of information



<ug7‘ 1.3 Temporary objects and storage

Overview of temporary objects

* For programming, you can use temporary objects which
work similar to locals

« There are different types of temporary objects
— tempvar
— tempname
— tempfile

« Used as command, all create temporary names, which
then can be used to create objects which will be deleted
after the program ends

Stata Self-Learning Course



<ug7‘ 1.3 Temporary objects and storage

What exactly is Stata doing?

To find out how your (or any other) program is working,
you can use set trace on and run the program

Stata will then display you every single working step

This is very time- and space-consuming, so remember to
turn it off using set trace off

The command is very useful to detect where in the
routine an error occurred

Stata Self-Learning Course 10



L&-{ 1.3 Temporary objects and storage

Creating your own (e)return lists

« Like the standard Stata programs, results from self-
written programs can be stored in r(), e(), or s()

* For this, you can specify the class of the programm as
rclass, eclass, or sclass
— rclass: return list for most commands

— eclass: return list for estimation commands (for a recommended
convention, see [P] eclass)

— sclass: special return list for locals in subroutines (see next topic)

Stata Self-Learning Course 11



