
Overview of temporary objects

• Sometimes you need intermediate variables, matrices or 
estimations for calculations or other purposes

• In programs, two issues might emerge:
– You have to make sure that the name you give to the object does 

not already exist
– Once you are done with the process, you don't need the object 

anymore, it is in your way

• Sometimes, preserve and restore can be helpful, but if the 
program also has permanent outputs, this might not be 
what you need

• Locals have traits which would solve these issues, but 
they can only store a certain kind of information

1.3 Temporary objects and storage

8Stata Self-Learning Course



Overview of temporary objects

• For programming, you can use temporary objects which 
work similar to locals

• There are different types of temporary objects
– tempvar

– tempname

– tempfile

• Used as command, all create temporary names, which 
then can be used to create objects which will be deleted 
after the program ends

1.3 Temporary objects and storage

9Stata Self-Learning Course



What exactly is Stata doing?

• To find out how your (or any other) program is working, 
you can use set trace on and run the program

• Stata will then display you every single working step
• This is very time- and space-consuming, so remember to 

turn it off using set trace off

• The command is very useful to detect where in the 
routine an error occurred

1.3 Temporary objects and storage

10Stata Self-Learning Course



Creating your own (e)return lists

• Like the standard Stata programs, results from self-
written programs can be stored in r(), e(), or s()

• For this, you can specify the class of the programm as 
rclass, eclass, or sclass
– rclass: return list for most commands
– eclass: return list for estimation commands (for a recommended 

convention, see [P] eclass)
– sclass: special return list for locals in subroutines (see next topic)

1.3 Temporary objects and storage

11Stata Self-Learning Course


